top of page

Market Research Group

Público·10 miembros

Quantum Field Theory In Curved Spacetime: Quant...

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored,[1] such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars.[2][3]

Quantum Field Theory in Curved Spacetime: Quant...

Three of the four fundamental forces of physics are described within the framework of quantum mechanics and quantum field theory. The current understanding of the fourth force, gravity, is based on Albert Einstein's general theory of relativity, which is formulated within the entirely different framework of classical physics. However, that description is incomplete: describing the gravitational field of a black hole in the general theory of relativity leads physical quantities, such as the spacetime curvature, to diverge at the center of the black hole.

The field of quantum gravity is actively developing, and theorists are exploring a variety of approaches to the problem of quantum gravity, the most popular being M-theory and loop quantum gravity.[7] All of these approaches aim to describe the quantum behavior of the gravitational field. This does not necessarily include unifying all fundamental interactions into a single mathematical framework. However, many approaches to quantum gravity, such as string theory, try to develop a framework that describes all fundamental forces. Such a theory is often referred to as a theory of everything. Others, such as loop quantum gravity, make no such attempt; instead, they make an effort to quantize the gravitational field while it is kept separate from the other forces.

Thought experiment approaches have been suggested as a testing tool for quantum gravity theories.[8][9] In the field of quantum gravity there are several open questions - e.g., it is not known how spin of elementary particles sources gravity, and thought experiments could provide a pathway to explore possible resolutions to these questions,[10] even in the absence of lab experiments or physical observations.

In the early 21st century, new experiment designs and technologies have arisen which suggest that indirect approaches to testing quantum gravity may be feasible over the next few decades.[11][12][13][14] This field of study is called phenomenological quantum gravity.

Much of the difficulty in meshing these theories at all energy scales comes from the different assumptions that these theories make on how the universe works. General relativity models gravity as curvature of spacetime: in the slogan of John Archibald Wheeler, "Spacetime tells matter how to move; matter tells spacetime how to curve."[15] On the other hand, quantum field theory is typically formulated in the flat spacetime used in special relativity. No theory has yet proven successful in describing the general situation where the dynamics of matter, modeled with quantum mechanics, affect the curvature of spacetime. If one attempts to treat gravity as simply another quantum field, the resulting theory is not renormalizable.[16] Even in the simpler case where the curvature of spacetime is fixed a priori, developing quantum field theory becomes more mathematically challenging, and many ideas physicists use in quantum field theory on flat spacetime are no longer applicable.[17]

It is widely hoped that a theory of quantum gravity would allow us to understand problems of very high energy and very small dimensions of space, such as the behavior of black holes, and the origin of the universe.[1]

However, gravity is perturbatively nonrenormalizable.[26][27] For a quantum field theory to be well defined according to this understanding of the subject, it must be asymptotically free or asymptotically safe. The theory must be characterized by a choice of finitely many parameters, which could, in principle, be set by experiment. For example, in quantum electrodynamics these parameters are the charge and mass of the electron, as measured at a particular energy scale.

On the other hand, in quantizing gravity there are, in perturbation theory, infinitely many independent parameters (counterterm coefficients) needed to define the theory. For a given choice of those parameters, one could make sense of the theory, but since it is impossible to conduct infinite experiments to fix the values of every parameter, it has been argued that one does not, in perturbation theory, have a meaningful physical theory. At low energies, the logic of the renormalization group tells us that, despite the unknown choices of these infinitely many parameters, quantum gravity will reduce to the usual Einstein theory of general relativity. On the other hand, if we could probe very high energies where quantum effects take over, then every one of the infinitely many unknown parameters would begin to matter, and we could make no predictions at all.[28]

It is conceivable that, in the correct theory of quantum gravity, the infinitely many unknown parameters will reduce to a finite number that can then be measured. One possibility is that normal perturbation theory is not a reliable guide to the renormalizability of the theory, and that there really is a UV fixed point for gravity. Since this is a question of non-perturbative quantum field theory, finding a reliable answer is difficult, pursued in the asymptotic safety program. Another possibility is that there are new, undiscovered symmetry principles that constrain the parameters and reduce them to a finite set. This is the route taken by string theory, where all of the excitations of the string essentially manifest themselves as new symmetries.[29][better source needed]

In an effective field theory, all but the first few of the infinite set of parameters in a nonrenormalizable theory are suppressed by huge energy scales and hence can be neglected when computing low-energy effects. Thus, at least in the low-energy regime, the model is a predictive quantum field theory.[30] Furthermore, many theorists argue that the Standard Model should be regarded as an effective field theory itself, with "nonrenormalizable" interactions suppressed by large energy scales and whose effects have consequently not been observed experimentally.[31]Works pioneered by Barvinsky and Vilkovisky [32][33][34][35] suggest as a starting point up to second order in curvature the following action, consisting of local and non-local terms:

On the other hand, quantum mechanics has depended since its inception on a fixed background (non-dynamic) structure. In the case of quantum mechanics, it is time that is given and not dynamic, just as in Newtonian classical mechanics. In relativistic quantum field theory, just as in classical field theory, Minkowski spacetime is the fixed background of the theory.

String theory can be seen as a generalization of quantum field theory where instead of point particles, string-like objects propagate in a fixed spacetime background, although the interactions among closed strings give rise to space-time in a dynamic way.Although string theory had its origins in the study of quark confinement and not of quantum gravity, it was soon discovered that the string spectrum contains the graviton, and that "condensation" of certain vibration modes of strings is equivalent to a modification of the original background. In this sense, string perturbation theory exhibits exactly the features one would expect of a perturbation theory that may exhibit a strong dependence on asymptotics (as seen, for example, in the AdS/CFT correspondence) which is a weak form of background dependence.

Topological quantum field theory provided an example of background-independent quantum theory, but with no local degrees of freedom, and only finitely many degrees of freedom globally. This is inadequate to describe gravity in 3+1 dimensions, which has local degrees of freedom according to general relativity. In 2+1 dimensions, however, gravity is a topological field theory, and it has been successfully quantized in several different ways, including spin networks.[citation needed]

Quantum field theory on curved (non-Minkowskian) backgrounds, while not a full quantum theory of gravity, has shown many promising early results. In an analogous way to the development of quantum electrodynamics in the early part of the 20th century (when physicists considered quantum mechanics in classical electromagnetic fields), the consideration of quantum field theory on a curved background has led to predictions such as black hole radiation.

A conceptual difficulty in combining quantum mechanics with general relativity arises from the contrasting role of time within these two frameworks. In quantum theories time acts as an independent background through which states evolve, with the Hamiltonian operator acting as the generator of infinitesimal translations of quantum states through time.[39] In contrast, general relativity treats time as a dynamical variable which relates directly with matter and moreover requires the Hamiltonian constraint to vanish.[40] Because this variability of time has been observed macroscopically, it removes any possibility of employing a fixed notion of time, similar to the conception of time in quantum theory, at the macroscopic level.

There are a number of proposed quantum gravity theories.[41] Currently, there is still no complete and consistent quantum theory of gravity, and the candidate models still need to overcome major formal and conceptual problems. They also face the common problem that, as yet, there is no way to put quantum gravity predictions to experimental tests, although there is hope for this to change as future data from cosmological observations and particle physics experiments become available.[42][43]

The central idea of string theory is to replace the classical concept of a point particle in quantum field theory with a quantum theory of one-dimensional extended objects: string theory.[44] At the energies reached in current experiments, these strings are indistinguishable from point-like particles, but, crucially, different modes of oscillation of one and the same type of fundamental string appear as particles with different (electric and other) charges. In this way, string theory promises to be a unified description of all particles and interactions.[45] The theory is successful in that one mode will always correspond to a graviton, the messenger particle of gravity; however, the price of this success is unusual features such as six extra dimensions of space in addition to the usual three for space and one for time.[46] 041b061a72

Acerca de

Welcome to the group! You can connect with other members, ge...
Página del grupo: Groups_SingleGroup
bottom of page